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Synchronization is a fundamental problem in natural and artificial coupled
multi-component systems. We investigate to what extent small-world couplings (ex-
tending the original local relaxational dynamics through the random links) lead to the
suppression of extreme fluctuations in the synchronization landscape of such systems.
In the absence of the random links, the steady-state landscape is “rough” (strongly de-
synchronized state) and the average and the extreme height fluctuations diverge in the
same power-law fashion with the system size (number of nodes). With small-world links
present, the average size of the fluctuations becomes finite (synchronized state). For
exponential-like noise the extreme heights diverge only logarithmically with the number
of nodes, while for power-law noise they diverge in a power-law fashion. The statistics
of the extreme heights are governed by the Fisher–Tippett–Gumbel and the Fréchet
distribution, respectively. We illustrate our findings through an actual synchronization
problem in parallel discrete-event simulations.
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1. Introduction

Many of our important technological, information, and infrastructure systems form
complex networks [1–6] with a large number of components. These networks consist
of nodes (components of the system) and links connecting the nodes. The links facili-
tate some kind of effective interaction/dynamics between the nodes. Examples (with
the processes inducing the interaction between the nodes) include high-performance
scalable parallel or grid-computing networks (synchronization protocols for massive
parallelization) [6], diffusive load-balancing schemes (relocating jobs among pro-
cessors) [7], the Internet (protocols for sending/receiving packets) [8], or the elec-
tric power grid (generating/transmitting power between generators and buses) [5].
Many of these systems are autonomous (by design or historical evolution), i.e., they
lack a central regulator. Thus, fluctuations in the “load” in the respective network
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(data/state savings or task allocation in parallel simulations, traffic in the Internet,
or voltage/phase in the electric grid) are determined by the collective result of the
individual decisions of many interacting “agents” (nodes). As the number of proces-
sors on parallel architectures increases to hundreds of thousands [9], grid-computing
networks proliferate over the Internet [10,11], or the electric power-grid covers, e.g.,
the North-American continent [5], fundamental questions on the corresponding dy-
namical processes on the respective underlying networks must be addressed.

Typically, large fluctuations in the above networks are to be avoided (e.g., for
scalability or stability reasons). In the absence of global intervention or control, this
can be a difficult task. Motivated by a recent example [6] for small-world (SW) [12]
synchronized autonomous systems in the context of scalable parallel computing, we
investigate the steady-state properties of the extreme fluctuations in SW-coupled
interacting systems with relaxational dynamics [13]. Since the introduction of SW
networks [12] it has been well established that such networks can facilitate au-
tonomous synchronization [14–16]. In addition to the average “load” in the network,
knowing the typical size and the distribution of the extreme fluctuations [17–19] is
of great importance from a system-design viewpoint, since failures and delays are
triggered by extreme events occurring on an individual node.

Relationship between extremal statistics and universal fluctuations in correlated
systems has been studied intensively [20–35]. The focus of a number of these stud-
ies was to find connections, if any, between the probability distribution of global

observables or order parameters (such as the width in surface growth problems [36]
or the magnetization in magnetic systems [37]) and known universal extreme-value
limit distributions [17–19]. Recent analytic results demonstrated [28, 31] that, in
general (except for special cases [27]), there are no such connections. Here we dis-
cuss to what extent SW couplings (extending the original dynamics through the
random links) lead to the suppression of the extreme fluctuations of the local order
parameter or field variable in various noisy environments. We illustrate our findings
on an actual synchronization problem in scalable parallel computing [6]. In Sec. 2
we review the well-known extreme-value limit distributions for exponential-like and
power-law-tail distributed random variables. In Sec. 3 we review recent results [13]
on the scaling behavior of the extreme fluctuations and their distribution. for the
Edwards–Wilkinson model [38] on SW networks [39] with exponential-like noise.
In Sec. 4 we apply these results to study the extreme load fluctuations in SW-
synchronized parallel discrete-event simulation (PDES) schemes [40,41], applicable
to high performance parallel architectures and large-scale grid-computing networks.
In Sec. 5 we extend our earlier studies [13] and consider the synchronization prob-
lem in the presence of power-law tailed noise. We finish the Letter with a brief
summary in Sec. 6.

2. A Brief Review of the Extreme-Value Limit Distribution for Inde-

pendent Random Variables

2.1. Exponential-like variables

First, we consider the case when the individual complementary cumulative distri-
bution P>(x) (the probability that the individual stochastic variable is greater than
x) decays faster than any power law, i.e., exhibits an exponential-like tail in the
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asymptotic large-x limit. (Note that in this case the corresponding probability den-
sity function displays the same exponential-like asymptotic tail behavior.) We will

assume P>(x) ' e−cxδ

for large x values, where c and δ are constants. Then the
cumulative distribution P max

< (x) for the largest of the N events (the probability
that the maximum value is less than x) can be approximated as [32, 42, 43]

Pmax
< (x) = [P<(x)]N = [1 − P>(x)]N = eN ln[1−P>(x)] ' e−NP>(x) , (1)

where one typically assumes that the dominant contribution to the statistics of
the extremes comes from the tail of the individual distribution P>(x). With the
exponential-like tail in the individual distribution, this yields

Pmax
< (x) ' e−e−cxδ+ln(N)

. (2)

The extreme-value limit theorem states that there exists a sequence of scaled vari-
ables x̃ = (x−aN )/bN , such that in the limit of N→∞, the extreme-value probabil-
ity distribution for x̃ asymptotically approaches the Fisher–Tippett–Gumbel (FTG)
distribution [17, 18]:

P̃max
< (x̃) ' e−e−x̃

, (3)

with mean 〈x̃〉=γ (γ=0.577 . . . being the Euler constant) and variance σ2
x̃ = 〈x̃2〉−〈x̃〉2

= π2/6. From Eq. (2), one can deduce [43,44] that to leading order the scaling co-

efficients are aN =
[

ln(N)
c

]1/δ

and bN = (δc)−1
[

ln(N)
c

](1/δ)−1

. The average value of

the largest of the N original variables then scales as

〈xmax〉 = aN + bNγ '
[

ln(N)

c

]1/δ

(4)

(up to O( 1
ln(N) ) correction) in the asymptotic large-N limit. When comparing with

experimental or simulation data, instead of Eq. (3), it is often convenient to use
the form of the FTG distribution which is scaled to zero mean and unit variance,
yielding

P̃max
< (y) = e−e−(ay+γ)

, (5)

where a = π/
√

6 and γ is the Euler constant. In particular, the corresponding FTG
density then becomes

p̃max(y) = ae−(ay+γ)−e−(ay+γ)

. (6)

2.2. Power-law tailed variables

Now consider independent identically distributed random variables where the tail
of the complementary cumulative distribution decays in a power law fashion, i.e.,
P>(x) ' A/xµ for large values of x. Assuming again that the dominant contribution
to the statistics of the extremes comes from the tail of the individual distribution
[32, 42, 43], Eq.(1) yields

Pmax
< (x) ' e−NP>(x) ' e−NA/xµ

. (7)
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Introducing the scaled variable x̃ = x/bN , where bN = (AN)1/µ, yields the standard
form of the so called Fréchet distribution for the extremes in the asymptotic large-N
limit [17, 19]

P̃max
< (x̃) = e−1/x̃µ

, (8)

and the corresponding probability density

p̃max(x̃) =
µ

x̃µ+1
e−1/x̃µ

. (9)

One can note that the tail behavior of the extremes has been inherited from that of
the original individual variables, i.e., p̃max(x̃) ∼ 1/x̃µ+1 for large values of x̃. The
first moment of the extreme exist if µ > 1 and for the average value of the largest
of the N original power-law variables one finds

〈xmax〉 = bN 〈x̃〉 ' Γ(1 − 1/µ)(AN)1/µ ∼ N1/µ (10)

where Γ(z) is Euler’s gamma function. For comparison with experimental or sim-
ulation data it is often convenient to use an alternative scaling for the extremes
y = x/〈xmax〉, yielding collapsing (N -independent) probability density functions
similar to Eq.(9)

p̃max(y) =
µ

Γµ(1 − 1/µ)yµ+1
e−1/(Γµ(1−1/µ)yµ) . (11)

3. Extreme Fluctuations in the Small-World-Coupled Edwards–Wilkinson

Model

We consider the simplest stochastic model with linear relaxation on a SW network,

∂thi(t) = −(2hi − hi+1 − hi−1) −
N

∑

j=1

Jij(hi − hj) + ηi(t) , (12)

where hi(t) is the local height or field variable at node i at time t and ηi(t) is
a delta-correlated short-tailed (e.g., Gaussian) noise. The symmetric matrix Jij

(with matrix elements being equal to 0 or p) represents the quenched random links
of strength p on top of a one dimensional regular lattice. In the construction of the
SW network presented here, each node has exactly one random neighbor [Fig. 1(a)].
That is, pairs of nodes are selected at random, and once they are linked, they
cannot be selected again. This construction is motivated by our application [6, 45]
to scalable PDES schemes (see Sec. 4), where fluctuations in the individual degree of
the nodes are to be avoided. Our construction of the SW network differs from both
the original (“rewiring”) [12,14] and the “soft” version [39,46–49] of the SW network
(where an Erdős–Rényi random graph [50] is thrown on top of a regular lattice). Our
construction too, however, exhibits a well balanced coexistence among short- and
long-range links (random links are placed on the top of a regular substrate). Further,
the average path length 〈l〉N (the average minimum number of links connecting two
randomly chosen nodes) scales logarithmically with the system size N [Fig. 1(b)],
i.e., like most other random networks [1], it too exhibits the “small-world” property
(or low-degree of separation).
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Fig. 1. (a) A small-world network where random links are added to the ring, such that each node
has exactly one random link. (b) Average shortest path as a function of the logarithm of the number
of nodes for our small-world synchronization network shown in (a). The straight line represents
the slope of the asymptotic large N behavior of the average shortest path 〈l〉N ' 1.42 ln(N).

Equation (12), the extension of the the Edwards–Wilkinson (EW) model to a
SW “substrate”, where the strength of the interactions through the random links
is p, is a prototypical synchronization problem with “local” relaxation. The width

w ≡

√

√

√

√

〈

1

N

N
∑

i=1

(hi − h̄)2

〉

, (13)

borrowing the framework from non-equilibrium surface-growth phenomena, pro-
vides a sensitive measure for the average degree of synchronization in coupled multi-
component systems [6, 51]. In Eq. (13) 〈. . .〉 denotes an ensemble average over the

noise in Eq. (12), and h̄=(1/N)
∑N

i=1 hi is the mean height. In addition to the
width, we will study the scaling behavior of the largest fluctuations (e.g., above the
mean) in the steady-state

〈∆max〉 ≡ 〈hmax − h̄〉 . (14)

Equation (12) (and its generalization with a Kardar–Parisi–Zhang (KPZ)-like non-
linearity [52]) is also believed to govern the steady-state progress and scalability
properties of a large class of PDES schemes [6,51,53–55]. In this context, the local
height variables {hi(t)}N

i=1 correspond to the progress of the individual processors af-
ter t parallel steps (Sec. 4). The EW/KPZ-type relaxation at a coarse-grained level
originates from the “microscopic” (node-to-node) synchronizational rules. In the
absence of the random links with purely short-range connections, the correspond-
ing steady-state landscape is rough [36] (de-synchronized state), i.e., it is dominated
by large-amplitude long-wavelength fluctuations. The extreme values of the local
fluctuations emerge through these long-wavelength modes and, in one dimension,
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the extreme and average fluctuations follow the same power-law divergence with
the system size [20, 34, 35, 54, 55]

〈∆max〉 ∼ w ∼ Nα , (15)

where α is the roughness exponent [36] [Figs. 2(a) and 3(a)]. The diverging width is
related to an underlying diverging lengthscale, the lateral correlation length, which
reaches the system size N for a finite system. In PDES schemes the average local
memory requirement on each node is proportional to the spread of the progress of the
individual processors (the width of the landscape of the progress of the simulation).
Thus, a diverging width (strongly de-synchronized state) [Fig. 2(a)] can seriously
hinder scalable data management [54, 55], motivating the implementation of a SW
synchronization network [6] (Sec. 4).

The important feature of the EW model on SW networks is the development
of an effective nonzero mass Σ(p), corresponding to an actual or pseudo gap in
a field theory sense [39, 48, 56], generated by the quenched-random structure [39].
In turn, both the average correlation length ξ ' [Σ(p)]−1/2 and the width w '
(1/

√
2)[Σ(p)]−1/4 approach a finite value (synchronized state) and become self-

averaging in the N→∞ limit [45]. For example, for our above described construction
of the SW network [39], for small p values, Σ(p) ∼ p. Thus, the average correlation
length becomes finite for an arbitrarily small but nonzero strength of the random
links (one such link per site). This is the fundamental effect of extending the orig-
inal dynamics to a SW network: it decouples the fluctuations of the originally
correlated system. Then, the extreme-value limit theorems can be applied using
the number of independent blocks N/ξ in the system [32, 43]. Further, if the tail
of the noise distribution decays in an exponential-like fashion, the individual rela-
tive height distribution will also do so [57], and depends on the combination ∆i/w,
where ∆i = hi−h̄ is the relative height measured from the mean at site i. Con-
sidering, e.g., the fluctuations above the mean for the individual sites, we will then
have P>(∆i) ' exp[−c(∆i/w)δ ], where P>(∆i) denotes the “disorder-averaged”
(averaged over network realizations) single-site relative height distribution, which
becomes independent of the site i for SW networks. From the above it follows that
the cumulative distribution for the extreme-height fluctuations relative to the mean
∆max=hmax−h̄, if scaled appropriately, will be given by Eq. (3) [or alternatively by
Eq. (5)] in the asymptotic large-N limit (such that N/ξ�1). Further, from Eq. (4),
the average maximum relative height will scale as

〈∆max〉 ' w

[

ln(N/ξ)

c

]1/δ

' w

c1/δ
[ln(N)]

1/δ
, (16)

where we kept only the leading order term in N . Note, that both w and ξ approach
their finite asymptotic N -independent values for SW-coupled systems. Also, the
same logarithmic scaling with N holds for the largest relative deviations below the
mean 〈h̄−hmin〉 and for the maximum spread 〈hmax−hmin〉. This weak logarithmic
divergence, which one can regard as marginal, ensures synchronization for practi-
cal purposes in SW coupled multi-component systems with local relaxation in an
environment with exponential-like noise.
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Fig. 2. Snapshots of the virtual time horizon for the conservative PDES scheme with N=104

processors in the steady state. (a) The processors are connected in a ring-like fashion; (b) the
processors are connected by a small-world topology and the additional synchronization through
the random link is performed with probability p=0.10 at every parallel step. The vertical scales
indicating the progress of the individual processing elements are the same in (a) and (b). The
arrows indicate the average (w) and the extreme (∆max) fluctuations in virtual time horizon.

4. Application to Scalable Parallel Discrete-Event Simulations on High-

Performance Parallel and Grid Computing Networks

Developing and implementing massively parallel algorithms is among the most chal-
lenging areas in computer science and in computational science and engineering [58].
While there are numerous technological and hardware-related points, e.g., concern-
ing efficient message passing and fast communications between computer nodes,
the theoretical algorithmic challenge is often as important. This is particularly
true for cases when the parallel algorithm has to simulate the time evolution of
a complex system in which the local changes (discrete events) in the configura-
tion are inherently asynchronous. The basic notion of the above discrete-event
systems is that time is continuous and the changes in the local configurations oc-
cur at random instants of time (hence the asynchrony of the time evolution of the
local configuration). Between events, the local configuration remains unchanged.
In physics or chemistry these types of simulations are most commonly referred to
as dynamic or kinetic Monte Carlo simulations [59]. In computer science they are
called discrete-event simulations. PDES schemes [40,41,60] are capable of faithfully
simulating such systems in a massively parallel fashion. For very large interacting
systems (where trivial or “embarrassing” parallelization is not possible or highly
inefficient due to CPU/memory limitations), PDES is the only way to perform par-
allel simulations without changing the original underlying asynchronous dynamics.
Examples of PDES applications include dynamic channel allocation in cell phone
communication networks [61,62], models of the spread of diseases [63], and dynamic
phenomena in highly anisotropic magnetic thin films [64–66]. In these examples the
discrete events are call arrivals, infections, and changes of the orientation of the
local magnetic moments, respectively.

The difficulty of parallel discrete-event simulations is that the local changes
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(updates) in the system are not synchronized by a global clock. The essence of
the corresponding PDES schemes, capable of faithfully simulating these systems,
is to algorithmically parallelize “physically” non-parallel dynamics of the underly-
ing systems. This requires some kind of synchronization to ensure causality [40].
The two basic ingredients of PDES schemes are a set of local simulated times (or
virtual times [67]) and a synchronization scheme. First, a scalable parallel scheme
must ensure that the average progress rate of the simulation approaches a nonzero
asymptotic value in the long-time limit as the number of processors (or nodes) goes
to infinity. Second, the spread of the virtual time horizon (the spread of the progress
of the individual processors) should be bounded as the number of processors goes
to infinity [68]. The second requirement is crucial for the measurement phase of
the simulation to be scalable: a diverging spread of the virtual time horizon (as the
number of processors goes to infinity) hinders scalable data management [54, 55].
Temporarily storing a large amount of simulated data on each node (proportional
to the spread of the virtual time horizon) is limited by available memory, while
frequent global synchronizations can get computationally costly for a large number
of nodes on certain parallel architectures. In the latter case, one aims to devise
a parallel scheme where the processors make a nonzero close-to-uniform progress
without global synchronization. In such a scheme, the processors autonomously learn
the global state of the system (without explicit global messages) and adjust their
progress rate accordingly [6].

PDES algorithms concurrently advance the local simulated time on each proces-
sor [or processing element (PE)], without violating causality. In a “conservative”
PDES scheme [69–72], only those PEs that are guaranteed not to violate causality
are allowed to process their events and increment their local time. The rest of the
PEs must “idle.” In an “optimistic” approach [67], the processors do not have to
idle, but since causality is not guaranteed at every update, the simulated history
on certain processors can become corrupted. This requires a complex “rollback”
protocol to correct erroneous computations. Both simulation approaches lead to
an evolving and fluctuating time horizon during algorithmic execution. Similar to
our earlier results [51] in finding a connection between certain conservative PDES
schemes [71, 72] and kinetic roughening in nonequilibrium surfaces [36, 52, 73], a
“complex system” approach was also successful to establish the connection [74, 75]
between rollback-based (or optimistic) PDES schemes [67] and self-organized criti-
cality [76,77]. In what follows, we will focus on the synchronizability of conservative
PDES schemes, in particular, on the behavior of the width and the largest fluctua-
tions of the virtual time horizon.

Consider an arbitrary one-dimensional system with nearest-neighbor interac-
tions, in which the discrete events (update attempts in the local configuration)
exhibit Poisson asynchrony. In the one-site-per-PE scenario, each PE has its own
local simulated time, constituting the virtual time horizon {hi(t)}N

i=1 (essentially,
the progress of the individual nodes). Here t is the discrete number of parallel steps
executed by all PEs, which is proportional to the wall-clock time and N is the num-
ber of PEs. According to the basic conservative synchronization scheme [71,72], at
each parallel step t, only those PEs for which the local simulated time is not greater
then the local simulated times of their virtual neighbors, can increment their local
time by an exponentially distributed random amount. (Without loss of generality
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Fig. 3. (a) Scaling behavior of the average (w) and the extreme (∆max) fluctuations in the virtual
time horizon for the conservative PDES scheme in the steady state. The processors are connected
in a ring-like fashion (log-log scales). The dashed line represents the theoretical power law with the
roughness exponent α=1/2. (b) The same quantities as in (a), but the processors are connected by
a small-world topology and the additional synchronization through the random link is performed
with probability p=0.10 at every parallel step (log-normal scales). The solid straight line indicates
the weak logarithmic increase of the extreme fluctuations with the system size.

we assume that the mean of the local time increment is one in simulated time units.)
Thus, denoting the virtual neighborhood of PE i by Si, if hi(t) ≤ minjεSi

{hj(t)},
PE i can update the configuration of the underlying site it carries and determine the
time of the next event. Otherwise, it idles. Despite its simplicity, this rule preserves
unaltered the asynchronous causal dynamics of the underlying system [71, 72]. In
the original algorithm [71, 72], the virtual communication topology between PEs
mimics the interaction topology of the underlying system. For example, for a one-
dimensional system with nearest-neighbor interactions, the virtual neighborhood
of PE i, Si, consists of the left and right neighbor, PE i−1 and PE i+1. It was
shown [51] that then the virtual time horizon exhibits KPZ-like kinetic roughening
and the steady-state behavior in one dimension is governed by the EW Hamiltonian.
Thus, both the average (the spread in the progress of the individual PEs) and the
extreme fluctuations of the virtual time horizon diverge when N→∞ [Figs. 2(a) and
3(a)], hindering efficient data collection in the measurement phase of the simula-
tion [54]. To achieve a near-uniform progress of the PEs without employing frequent
global synchronizations, it was shown [6] that including randomly chosen PEs (in
addition to the nearest neighbors) in the virtual neighborhood, results in a finite
average width [Figs. 2(b) and 3(b)]. Here we demonstrate that SW synchronization
in the above PDES scheme results in logarithmically increasing extreme fluctuations
in the simulated time horizon, governed by the FTG distribution.

In the SW-synchronized version of the conservative PDES scheme each PE has
exactly one random neighbor (in addition to the nearest neighbors) and the local
simulated time of the random neighbor is checked only with probability p at every
simulation step. Thus, the effective “strength” of the random links is controlled by
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Fig. 4. Disorder-averaged probability densities for the local height fluctuations for the SW-
synchronized (p=0.10) landscape for three system sizes indicated in the figure. Note the log-normal
scales. The solid straight line indicates the exponential tail.

the relative frequency p of the basic synchronizational steps through those links.
Note that the occasional extra checking of the simulated time of the random neigh-
bor is not needed for the faithfulness of the simulation. It is merely introduced to
control the width of the time horizon [6].

To study the extreme fluctuations of the SW-synchronized virtual time-horizon,
we “simulated the simulations”, i.e., the evolution of the local simulated times based
on the above exact algorithmic rules [13]. By constructing histograms for ∆i, we
observed that the tail of the disorder-averaged individual relative-height distribu-
tion decays exponentially (δ=1) [Fig. 4]. Then, we constructed histograms for the
extreme-height fluctuations Fig. 5(a). The scaled histograms, together with the
similarly scaled FTG density Eq. (6), are shown in Fig. 5(b). We also observed that
the distribution of the extreme values becomes self-averaging, i.e., independent of
the network realization. Figure 3(b) shows that for sufficiently large N (such that
w essentially becomes system-size independent) the average (or typical) size of the
extreme-height fluctuations diverge logarithmically, according to Eq. (16) with δ=1.
We also found that the largest relative deviations below the mean 〈h̄−hmin〉, and
the maximum spread 〈hmax−hmin〉 follow the same scaling with the system size
N . Note, that for our specific system (PDES time horizon), the “microscopic” dy-
namics is inherently nonlinear, but the effects of the nonlinearities only give rise
to a renormalized mass Σ(p) (leaving Σ(p)>0 for all p>0) [6]. Thus, the dynamics
is effectively governed by relaxation in a small world, yielding a finite correlation
length and, consequently, the slow logarithmic increase of the extreme fluctuations
with the system size [Eq. (16)]. Also, for the PDES time horizon, the local height
distribution is asymmetric with respect to the mean, but the average size of the
height fluctuations is, of course, finite for both above and below the mean. This
specific characteristic simply yields different prefactors for the extreme fluctuations
[Eq. (16)] above and below the mean, leaving the logarithmic scaling with N un-
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Fig. 5. (a) Disorder-averaged probability densities for the extreme-height fluctuations for the SW-
synchronized conservative PDES time horizons with p=0.10 for three system sizes indicated in the
figure. Note the log-normal scales. (b) The same as (a) but the probability densities are scaled
to zero mean and unit variance. The solid curve corresponds to the similarly scaled FTG density
Eq. (6) for comparison.

changed.

5. Synchronization in the Presence of Power-Law Noise

Employing SW-like synchronization networks to suppress large fluctuations was suc-
cessful in the presence exponential-like “noise”. We now investigate the scenario
when the noise distribution exhibits a power-law tail. We consider the synchro-
nization problem from parallel discrete-event simulations (see Sec. 4) for power-law
tailed asynchrony. The condition for updating the local “height” variables in the
synchronization landscape (corresponding to the local virtual times) is unchanged,
i.e., a node is only allowed to increment its local simulated time hi if it is a local
minimum in the virtual neighborhood (possibly including the random neighbor with
probability p). The increment, however, is now drawn from a power-law probability
density p(η) ∼ 1/ηγ+1. Since the above local update rule is, essentially, relaxation
on the network, this model also serves as a prototypical model for relaxation on SW
networks in an environment with power-law noise. The above synchronization rules
can be applied to simulating systems with non-Poisson asynchrony, relevant to vari-
ous transport and transmission phenomena in natural and artificial systems [78–80].
For example, in Internet or WWW traffic, in part, as a result of universal power-law
tail file-size distributions [81,82], service times exhibit similarly tailed distributions
in the corresponding queueing networks [83–85]. In turn, when simulating these sys-
tems, the corresponding PDES should use power-law tail distributed local simulated
time increments.

For a purely one-dimensional connection topology (in the absence of the random
links) we observed kinetic roughening. Since the time to reach the steady, the
relaxation time in the steady state, and the surface width all diverge with the
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Fig. 6. (a) Snapshot for the SW-synchronized (p=0.10) landscape in a power-law noise environment
(γ=3) for N=104 nodes. (b) Disorder-averaged probability densities for the same parameters for
the local height fluctuations for three system sizes indicated in the figure. Note the log-normal
scales. The inset shows the same (for the positive domain) on log-log scales. The solid line
corresponds to the slope of µ+1≈3.

number of nodes, it is difficult to measure the roughness exponent accurately. It is
well documented [86], however, that KPZ-like growth in the presence of power-law
noise leads to anomalous roughening (yielding a roughness exponent greater than
1/2 in one dimension).

Here we show and discuss results for the power-law noise generated growth on
SW networks. We have chosen two values of γ governing the tail of the probability
density for the noise: γ=3 and γ=5. For both of these cases the noise have a
finite mean and variance. One can expect a power-law tail (at least for above
the mean) for the probability density of the individual local height fluctuations
p(∆i) ∼ 1/∆µ+1

i , once the noise is “filtered through” the collective dynamics. On
Fig. 6(a) we show a snapshot for the resulting synchronization landscape, indicating
the presence of some rare but very large fluctuations above the mean. Since the local
update rules lead to nonlinear (KPZ-like) effective interactions, we could not predict
the exponent of the local height distribution. Instead, we constructed histograms
representing p(∆i). For the above two values of the noise exponent, γ=3 and
γ=5, we observed power-law tail exponents for p(∆i) ∼ 1/∆µ+1

i as well, but with
exponents clearly differring from that of the noise, µ≈2 and µ≈4, respectively.
Figure 6(b) shows p(∆i) for the former. The figure indicates that for large ∆i a
power-law tail developes, while fluctuations below the mean exhibit an exponential-
like tail. This asymmetry is due to the asymmetry in the microscopic update rules:
local mimima were incremented by power-law distributed random amount, hence
anomalously large deviations above the mean can emerge.

Then we analyzed the scaling behavior of the average and the extreme height
fluctuations in the associated synchronization landscape. In the limit of large N ,
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system sizes N ≥103, according to Eq. (10).

w becomes system-size independent, while the extreme-height fluctuations above
the mean diverge in a power-law fashion according to Eq. (10) [Fig. 7]. Fitting
a power law for N≥103 yields 〈∆max〉 ∼ N0.47 and 〈∆max〉 ∼ N0.25 for the two
cases analyzed in Fig. 7, for γ=3 and γ=5, respectively. In order to understand the
underlying reason for this divergence, we analyzed the histograms constructed for
the probability density of the extreme height fluctuations p(∆max) [Fig. 8(a)]. The
shapes of these histograms suggest that the limit distribution is of Fréchet type.
We constructed the histograms for the scaled variable y = ∆max/〈∆max〉. Then
using µ = 1/0.47 = 2.1 and µ = 1/0.25 = 4 as implied by the scaling behavior of
〈∆max〉 [Eq. (10)], we plotted the similarly scaled Fréchet density Eq. (11) [Fig. 8(b).
These results indicate that the effect of the random links in SW networks is again
to decouple the local field variables, an in turn, the statistics of the extremes are
governed by the Fréchet distribution. Consequently, the average size of the extremes
diverges in a power-law fashion 〈∆max〉 ∼ N1/µ. This power-law divergence is not

the result of a divergent lengthscale emerging from the cooperative effects of the
interacting nodes. On the contrary, the local field variables become effectively
independent using SW synchronization. The tail behavior for them (power-law
with a possibly different exponent), however, is inherited from the noise. Hence,
the statistics of the extremes will be of the Fréchet type, yielding a power-law
increase of the average size of the largest fluctuations above the mean.

The above picture is reasonably consistent in that the exponents for the tail
behavior (∼1/∆µ+1

i ) for both the probability density of the local heights p(∆i)
and the extremes p(∆max) were within about 6%. Further, the average size of the
extremes increases as N1/µ, in accordance with the underlying Fréchet distribution.

It is interesting to note that for µ≈2, formally, p(∆i) does not have a finite
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Fig. 8. (a) Disorder-averaged probability densities for the extreme-height fluctuations for the SW-
synchronized (p=0.10) landscape in a power-law noise environment for γ=3 (filled symbols) and
γ=5 (open symbols) for three system sizes indicated in the figure. Note the log-log scales. (b)
Scaled probability densities. The solid curves correspond to the similarly scaled Fréchet density
Eq. (11) for comparison.

variance (associated with the width w =
√

〈(hi − h̄)2〉 =
√

〈(∆i)2〉). Indeed, in
the simulations we observed large fluctuations in w and errorbars of the order of
the width itself. The “theoretical” divergence for µ=2 is, of course, limited by the
logarithm of a large but finite cutoff in the simulations. This anomalous (formally
divergent) width is not related to a system-size dependent widening of the individual
distributions controlled by a divergent correlation length. Rather, the individual
distributions develop a heavy-tailed shape independent of the system size.

Examining the largest fluctuations below the mean reveals that they increase
only logarithmically with the system size. This is simply the result of the exponential-
like tail of the individual local height fluctuations below the mean [Fig. 6], where
the governing limit distribution is of the Gumbel type (Sec. 2.1).

The above results show, that SW synchronization can be efficient to control the
average size of the fluctuations, but the largest fluctuations still diverge in a power-
law fashion with the number of nodes. While the SW-network effectively decouples
the fluctuations in the synchronization landscape, it cannot suppress power-law tails
already present in local noise distribution. In fact, the inherited power-law tails for
the local height fluctuations are even “heavier” than that of the corresponding noise,
µ≈2 for γ=3 and µ≈4 for γ=5.

6. Summary

We considered the extreme-height fluctuations in a prototypical model with lo-
cal relaxation, unbounded local variables, and in the presence of exponential or
power-law tailed noise. We showed that when the interaction topology is extended
to include random links in a SW fashion, the local height variables become effec-
tively independent and the statistics of the extremes is governed by the FTG or
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the Fréchet distribution, respectively. For both types of noise, the average width
of the synchronization landscape becomes independent of the system size. The
extreme fluctuations increase only logarithmically with the number of nodes for
exponential-like noise and in a power-law fashion for the power-law noise. These
findings directly addresses synchronizability in generic SW-coupled systems where
relaxation through the links is the relevant node-to-node process and effectively
governs the dynamics. We illustrated our results on an actual synchronizational
problem in the context of scalable parallel simulations.

From a broader statistical physics viewpoint, the lines of investigations we pur-
sue contribute not only to scalability and synchronizability, but also to general
studies of collective phenomena on complex networks [1, 2, 15], e.g., on SW net-
works [12,14,39,46–48,87–96], and on scale-free [3,97–104] networks. In particular,
there is growing evidence that systems without inherent frustration exhibit (strict
or anomalous) [39,96] mean-field-like behavior when the original short-range inter-
action topology is modified to a SW network [39, 88–90, 92–96]. In essence, the
(quenched) SW couplings, although sparse, induce an effective relaxation to the
mean of the respective local field variables, and in turn, the system exhibits a
mean-field-like behavior [39, 96]. This effect is similar to those observed in models
with “annealed” long-range random couplings [105,106].
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